
1

A Scalable Bloom Filter Implementation and
Benchmarks in Java

Phil Gaiser
Raven Computing GmbH
Bremerhaven, Germany

phil.gaiser@raven-computing.com

Abstract—Bloom filters are a widely used data structure as they
allow for very efficient implementations regarding space usage
and runtime requirements. Over the past decades there have been
numerous proposals for adjusting the core idea of Bloom filters in
order to allow removal and counting of elements as well as other
features. However, many available concepts and implementations
do not allow scaling by dynamically changing set sizes. In this
paper we propose our implementation of a scalable Bloom filter
in the programming language Java based on the theoretical work
published by Almeida et al. in 2007. Furthermore, we conduct
measurements on how well our filter performs compared to other
publicly available (static) implementations. We can show through
benchmarks that our implementation yields competitive results
with regard to runtime and false positive rates while facilitating
dynamic scaling for cases with considerable set growth.

1. INTRODUCTION

Bloom filters [1] are an important data structure in computer
science as they allow the storage of sets without having
to keep all elements inserted into the set in memory. Thus
they have many practical applications [2] [3] particularly for
software environments with limited resources e.g. embedded
systems like network routers and smartphones. Bloom filters
achieve their outstanding performance by essentially storing
hash values of the original element, mapped to indices of a bit
vector instead of storing each element directly [1]. In practice,
one or more hash functions generate hashes of an object which
are then used to set various bits inside a bit vector. Later
on, when checking the existence of that object with the same
operation, all bits at the searched indices will be set. An
inserted element of any arbitrary size is therefore represented
only by a few bits inside the filter. This compression of
information makes Bloom filters very space efficient as a data
structure, however, it introduces a probability of error. That
is, a filter might erroneously affirm the presence of a specific
element in its set without it ever having been inserted, which
is called a false positive. On the other hand, a Bloom filter will
never deny the presence of an existent element in its set, i.e.
once inserted, subsequent membership queries for that element
are guaranteed to be affirmed.

As discussed in [3] [4] we divide each filter into K slices
of equal size. This will assure that all elements always set K
bits in the entire vector when inserting them into the filter. For
example, Fig. 1 illustrates the insertion of a first element into
a filter of size M = 15 bits with K = 3 slices and each slice
having m = 5 bits. As the vector in the example has now a

Fig. 1. A basic Bloom filter divided into K slices.

total of 3 bits set, the fill ratio p is now 20% (3/15 = 1/5).
If the output of all hash functions H0(x), ..., Hi(x) is evenly
distributed then as a consequence, the false positive probability
P of a subsequent element membership query is:

P = pK =

(
1

5

)3

= 0.008 = 0.8%

By inserting more distinct elements into the filter, the fill ratio
and therefore the false positive rate will increase accordingly.
A Bloom filter is optimally full when half of the bits inside
its bit vector are set [4]. Usually a maximum error rate can
be specified when a filter is initialized which determines the
highest acceptable probability that a membership query of any
element results in a false positive.

In the following we give a brief description of related work,
after which we go into the most important conceptual traits
of the scalable Bloom filter variant in Section 3. We then
describe the key points of our implementation in Section 4.
The results of our conducted benchmarks are discussed in
Section 5. We end by summarizing our findings in Section
6 with our conclusions.

2. RELATED WORK

The core concept of Bloom filters as proposed by the
original paper has already been extended in numerous ways to
add new capabilities and features. For example, the authors in
[5] [6] [7] propose variants of a counting Bloom filter which
allows removal of elements. In [8] [9] [10] an extension is pro-
posed to introduce subset matching capabilities. As an alter-
native to Bloom filters, Cuckoo filters [11] [12] also represent
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an approximate set data structure while being conceptually
based on Cuckoo hash tables. Additionally, implementations
of scalable Bloom filters exist for other languages [13] [14].

3. SCALABLE BLOOM FILTERS

Although the original concept of a Bloom filter has been
widely adopted, extensions and implementations usually re-
quire that the initial capacity is specified when the filter is con-
structed in memory. Normally this is taken as a constant which
means that the filter capacity cannot dynamically change at
runtime. While in some situations this does not mark a relevant
restriction, in other use cases where the expected amount of
elements is not or cannot be known in advance, this is clearly
problematic. Even though it is theoretically possible to add
more elements to a static filter than the maximum amount
specified, it is not practical to do so because the false positive
rate increases rapidly as the fill ratio starts to exceed the
stochastically optimum. To avoid this problem, the authors
in [4] propose a mechanism by which a new empty Bloom
filter is added whenever the fill ratio of the currently used
filter exceeds 50%. The new enlarged filter is then used for
any subsequent element insertions (read/write access) while all
previously utilised filters are only used for membership queries
(read access). Each new filter is larger and has more slices than
its predecessor and is called a stage of the underlying Bloom
filter data structure. The number of slices at any given stage
is:

Ki =

⌈
K0 + i log2

(
1

r

)⌉
where r is the tightening ratio of the Bloom filter. As shown in
[4], choosing r to be around 0.8 - 0.9 gives an optimal ratio.
In order to make the Bloom filter as a whole appropriately
adaptable to different growth situations, a slice growth factor
s is introduced. This is useful when the set size is expected
to increase significantly with respect to the initial capacity. In
practice the authors suggest to have s = 2 for small expected
set growth and s = 4 for larger set growth. The size of a vector
slice in each growth stage is defined by:

mi = m0s
l−1

where l is the number of stages at any given instance. Because
s is a factor of mi, setting s = 4 will result in a higher slice
growth than s = 2.

4. OUR IMPLEMENTATION

Our implementation was designed to be primarily efficient.
As every Bloom filter depends heavily on a low-level data
structure called a bit vector (also known as bit array or bit
set), we provide our own implementation of such. While
it is not specifically developed for the use inside a Bloom
filter but rather a more general purpose implementation, its
performance metrics have shown to be competitive enough
with other implementations provided by the SDK.

A. Growth

Since a scalable Bloom filter must properly resize itself
when certain predefined conditions are met, all core methods
(inserting and membership query) require more instructions
than a static counterpart. When the filter’s fill ratio reaches
the maximum acceptable value, a new bit vector must be
constructed and initialized which requires the allocation of
a new object in memory. Additional copy operations may
be needed in order to fit the new filter into the internal
array structure. The scalable implementation was developed
to only execute the minimal amount of additional instructions
needed to perform all necessary steps when resizing. Likewise,
additional instructions are also needed when performing a
membership query because all created bit vectors must be
searched for a particular generated hash value. Although
in practice an optimization can be applied for membership
queries where the first unset bit (zero bit) encountered in
a specific sub-vector causes the rest of that vector to be
skipped as the element in question cannot be in that vector.
Similarly, the first sub-vector which responds positively to a
hash membership request will cause the query as a whole to
be affirmed immediately.

B. Hash Algorithm

One of the crucial parts of any Bloom filter is the underlying
hash algorithm used. Although cryptographic hash functions
are generally developed to have a more evenly distributed (i.e.
more random) output than non-cryptographic hash functions,
they are also computationally more expensive [8]. But since
one key focus of our implementation has been performance
and for the general case it is not possible to know the type
of data to be used in a filter at compile time, the faster
non-cryptographic hash algorithm Murmur3 (128 bits) was
chosen. It is said to have a good enough bit distribution
while being performant from a computational perspective [15].
Interestingly, all implementations for the benchmark discussed
in Section 5 use the same or a variation of that algorithm for
hashing by default.

C. Allocation Free Code

The original code implementing the Murmur3 hash algo-
rithm in Java was taken from Google’s open source Guava
library. However, we found that it had some disadvantages
for the purpose of our implementation. On the one hand
it internally uses ByteBuffer objects to store the function
input value and to control the endianness of the raw byte
values when computing the hash. This is important for an
implementation of a general purpose hash algorithm so that the
same input on different platforms yields the exact same hash
value. But since cross-language support is not a requirement,
the endianness of bytes can be ignored. Additionally, the
instantiation of a ByteBuffer object can be avoided altogether
by directly working with index pointers on the primitive array
input value. Furthermore, by only returning the first 64 bits
from the 128 bit long hash value, an additional allocation
of an array can be avoided as well. Therefore our adjusted
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implementation of the Murmur3 hash algorithm returns a
single primitive long value and does not make any allocations
on heap memory. Thus both methods of our Bloom filter
regarding element insertion and membership query do not
allocate any objects on heap. The only exception to this is
when inserting an element requires a resizing operation of
the filter. Since our Bloom filter grows exponentially, this
case is negligible with regard to performance because the vast
majority of insertions do not entail a resizing operation.

D. Vector Access

Lastly, we apply a known technique for reducing the number
of required hash functions [16]. Ideally, every slice in each
vector would have its own independent hash function. How-
ever, that would require an insertion and membership query
to compute K separate hash values which in practice would
be too expensive. As described above, our adjusted Murmur3
hash function returns a single 64 bit long value. Since indexed
array access in Java is bounded by a signed 32-bit integer,
we split the hash value into two integers. Then, as we loop
through the slices of a vector, we take only the first hash value
as an array index and update it in each iteration by adding the
second hash value to it. No special logic is required at this
point since there is no arithmetic overflow for primitives in
Java. Therefore separating each filter into smaller slices takes
only three more arithmetic additions in practice.

5. EVALUATION

In order to evaluate the proposed implementation we de-
veloped a program to create benchmarks for both our as
well as other openly available implementations. To clarify the
underlying methodology we first elaborate on the criteria used
to decide what external implementations to include in our tests.

A. Criteria

As Bloom filters provide practical advantages for software
applications, we were in need of a deployable implementation.
Regardless of whether it allows for dynamic set growth, in
order for a software library to be deployable in production sys-
tems, it must exhibit a certain degree of quality. The following
requirements must be met for an external implementation to
be included in our benchmark tests:

• Filter type - The project must implement either a static or
scalable probabilistic set data structure. The exposed API
must allow the specification of both an initial capacity
as well as a maximum allowed false positive rate the
underlying set adheres to.

• Licensing - It must be open source and available on
GitHub. All code must be published under a permissive
license which allows commercial usage.

• Documentation - The code and API must be documented
properly. As a minimum requirement, critical API meth-
ods must have proper javadocs attached to them which
clarify their usage.

• Quality - A minimum standard regarding code quality
must be present. This criterion is not precisely quantified

since the corresponding project is not reviewed in detail.
However, obvious deficiencies in code quality like obfus-
cated code, pointless variable declarations etc., or code
which is still in alpha development may cause the project
not to be accepted as a test subject.

• Availability - Library artifacts must be accessible via the
Maven Central Repository.

• Compatibility - Library artifacts must be compatible to
Java 8 (minimum).

Even though today there is a large variety of platforms
which provide access to open source libraries and projects,
the only point of reference for external implementations
included in our benchmarks was GitHub. Projects published
on other platforms were not considered.

B. Test Subjects

The following test subjects were finally included into the
benchmarks:

• Baqend - Various implementations of static Bloom filters
provided by Baqend [17].

• Google - Their implementation of a static Bloom filter as
provided by the open source Guava library [18].

• Gunlogson - An implementation of a Cuckoo filter by
Mark Gunlogson [19].

• Sangupta - An implementation of a static Bloom filter by
Sandeep Gupta [20].

As shown above, the final set of test subjects contains three
static Bloom filter implementations and one Cuckoo filter.
Because Cuckoo filters are generally used for the same
purposes as Bloom filters, i.e. space efficient approximate
membership queries of elements, and we found the mentioned
implementation which meets our specified requirements, we
decided to include it in our benchmarks in order to have a
more complete view over all publicly available solutions, even
though Cuckoo filters are conceptually different than Bloom
filter.

C. Benchmark Setup

For creating benchmarks of our implementation we ran our
program on a server equipped with an Intel i7-9700K CPU and
64 GB of RAM. When executed, the program will run all con-
figured test laps sequentially on a single core. In each test lap a
concrete filter implementation is instantiated with the specified
lap parameters (initial capacity and maximum allowed error
rate). Then a data set of the given size is initialized with
either pattern or randomized elements. Additionally a second
data set is created which holds elements that are known to not
be in the first set. Therefore when performing membership
queries the actual false positive rate of the underlying filter
can be precisely computed. All elements of the first set are
then sequentially added into the concrete filter. The runtime is
measured with millisecond precision. After all insertions have
completed, the runtime for membership queries is computed.
Afterwards, the actual false positive rate is measured by
performing membership queries for definite negative samples
on the filter and counting the number of positive responses.
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Fig. 2. Average runtime of element insertions for various set sizes and a
maximum allowed error probability of 1%.

D. Filter Comparison

This section describes how well our implementation per-
forms with regard to key aspects compared to the other
implementations. One important trait of any data structure
is runtime behaviour. Since Bloom filters are intended to
be used with large sets, it is important to understand how
each implementation performs when used with such. In our
tests, the set size is increased exponentially in every iteration,
starting with 1,000 up to 16,384,000 elements. Fig. 2 shows
for each implementation the average runtime for element
insertions as a function of set size. As one can see, our filter
consequently outperforms all other implementations before
being slightly overtaken by Sangupta in the last iteration. The
absolute differences are, as one might expect, rather negligible
for smaller set sizes but increase steadily with larger sets.

The other important runtime behaviour to inspect is that
of the membership query method. Fig. 3 shows for each
implementation the average runtime for membership queries as
a function of set size. The first thing that can be noticed is that
in absolute terms, performing membership queries requires
less time than inserting elements. This can be explained by the
fact that when testing for the presence of an element in a filter,
the query can return early on if the first bit tested in a filter is
zero. Conversely, an element insertion always has to perform
a set operation on all corresponding bits to ensure a correct
vector state. Similarly to insertion operations, Fig. 3 shows
that our filter mostly outperforms other implementations with
the exception of Sangupta which takes the lead from around
4m elements and above.

In addition to runtime measurements we conducted tests for
determining the actual false positive rate with a set of definite
negative samples. That is, we constructed a set with 200,000
elements which are guaranteed to not be in the tested set,
then performed membership queries for those elements and
counted the number of positive responses (false positives).
Fig. 4 shows exemplarily the calculated false positive rate
for filters of all implementations as a function of set size.
As one can see, our filter is the only one which stays below
the requested maximum false positive rate of 1% at all times
(cf. Section 5-E). The other implementations mostly reside
around the allowed error rate while surpassing it occasionally,
with the Cuckoo filter (Gunlogson) having an exceptionally

Fig. 3. Average runtime of membership queries for various set sizes and a
maximum allowed error probability of 0.1%.

high error rate. Evaluations of other tests have shown that the
Cuckoo filter implementation does not adhere to the requested
error rate in many cases. With regard to our Bloom filter
implementation it should be noted though, that its superior
performance when it comes to the actual error rate (as shown
in Fig. 4) is also due to its scalable capabilities. This should
be kept in mind when comparing to other filters as static
implementations cannot scale. During a specific test run all
filters were given the exact same initialization parameters
which means that each filter was constructed to have the same
initial capacity. However, our implementation causes the filter
to grow when the initial bit vector is filled by more than 50%,
which usually occurred for the last inserted elements. Thus
when conducting subsequent error measurements our filter has
generally more space to perform membership queries against,
even though the additional bit vector is poorly used with a
fill ratio of usually under 1%. Because of scalability, our
filter has therefore a slight advantage compared to the other
implementations. When strictly disabling scalable growth, the
measured error rate is somewhat closer to that of the other
implementations.

E. Key Properties

This section describes our findings with regard to key
properties of our implementation. As the effective runtime
behaviour of a data structure depends not only on the input
data but also on the initialization parameters, we evaluated the
conducted tests to see how the runtime changes with certain
data types and parameters. The type of data in this context
is defined by being either random or pattern. As the name
suggests, random data is generated randomly during the tests
while the other type introduces a certain pattern into the data.
This distinction is important because practical deployments
of Bloom filters may also work with non-random data, i.e.
data which exposes a certain pattern, like file paths in a file
system. Since our implementation uses a non-cryptographic
hash function internally, a reoccurring pattern in the input data
may cause a deteriorated hash quality which in turn might
cause a worsened bit distribution in each vector. Combined
with other independently changing variables this might result
in a great variation of runtime measurements.
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Fig. 4. False positive rate for 200,000 randomly generated negative elements
and a maximum allowed error probability of 1%.

Fig. 5 shows the measured runtime for our filter when
working with a set of over 16m elements. It can be seen that
in fact there is a difference in effective runtime. First, it can be
noted that the data type alone makes only a small difference in
runtime. This is also a sign that the underlying hash function
used (Murmur3) has a random enough hash value output.
The observation that randomly generated data has a slower
runtime may be due to the fact that randomly generated
data is marginally longer than the pattern counterpart and
therefore it also takes slightly more time to compute the hash
value. Secondly, the measured runtime is also dependent on
the specified maximum false positive rate. As the maximum
allowed error rate gets tightened, the runtime for both element
insertions and membership queries also increases.

Another interesting property is the behaviour of the actual
false positive rate. As we have seen in Section 5-D it stays
for the most part significantly below the requested maximum
rate. But in order to compare the actual rates for different
maxima specified, it is better to show actual rates in relation
to the corresponding maximum rate, i.e. in percentage terms.
Fig. 6 shows that normalized error rate for different data types
and specified maximum error rates as a function of set size.
It can be seen that for the vast majority of cases, our filter
stays below or at the specified maximum error rate with the
exception of some outliers. The first observation that can be
made is that the maximum specified false positive rate of 0.1%
gives the comparably worst results even though it is between
the other specified rates of 1% and 0.01% as shown. On the
other hand, most actual rates of all configurations adhere to
the requested maximum error rate. Notable though, are the few
before mentioned outliers which score an exceptionally hight
error rate with one measured point having more than double
the maximum allowed error. It should also be noted that those
exceptional cases were exclusively observed for test runs with
pattern structured data. This might indicate a minor deficiency
in the output of randomness in our used hash function, as
was expected. However, since those exceptional error rates are
not occurring in a significant way overall, they are deemed
to be irrelevant for practical use cases. It can be said that
altogether the actual false positive rate is expected to adhere
to the maximum allowed rate in practical applications with
insignificant exceptions.

Fig. 5. Average runtime for different maximum allowed false positive rates,
element types and filter methods for a set with 16,384,000 elements.

Moreover, testing the scalability of our filter and the effect
it has on performance should be elaborated on. As we have
shown in the preceding sections, giving all filters the same
initial capacity causes our scalable implementation to outper-
form static filters in most cases (cf. Fig. 2, 3 and 4). Because
a scalable filter variant requires more internal operations in
order to achieve the scaling capability, it is expected to be
slower than its static counterparts when given a fractional
initial capacity. We examined this proposition by setting up test
laps in which we initialize our filter with a minuscule capacity
and then let it aggressively scale up to the highest available
set size. Fig. 7 exemplarily shows the insertion runtime for all
tested filters where our scalable implementation was given an
initial capacity of only 1k elements whereas the static filters
had been initialized with the full capacity of the underlying set.
Our filter therefore had to scale from 1k to over 16m elements.
It is evident that at some point the overhead introduced by
scaling outweighs all optimizations as discussed in Section 4.
However, Fig. 7 shows that for scaling the filter up to approx.
8m elements, there is no significant deterioration in runtime
for element insertions. Indeed, other tests have also indicated
that scaling up to moderate set sizes has no measurable effect
on runtime behaviour. After a certain point, however, filter
performance starts to suffer in a linear manner. For example,
when our filter initialized for scaling is supposed to achieve
the same performance as when initialized in a static way, an
initial capacity of approx. 500k is needed. In other words,
giving our filter an initial capacity of about half a million and
then scaling up to over 16m elements will result in similar
runtime behaviour as when given the full capacity right away.
Increasing the set size even further would likely introduce a
slight performance penalty.

Lastly, aggressive scaling also has some implications for
the actual false positive rate. While under practical conditions
scaling does not seem to cause unacceptably excessive error
rates, it does, however, somewhat increase the amount of out-
liers. Generally, the actual error rate approaches the maximum
allowed rate when scaling by several orders of magnitude
in relation to the initial capacity. For practically plausible
deployment scenarios we found that the actual error rate is
on average as good or better than the static counterparts.
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Fig. 6. Normalized false positive rate for different element types and
maximum allowed error rates as a function of set size. The 100% mark
corresponds to the maximum allowed error.

6. CONCLUSIONS

As we have shown in Section 5, our implementation of
a scalable Bloom filter provides competitive results with
regard to runtime requirements and maximum allowed false
positive rates. We could show through benchmarks that our
implementation’s performance is not worse than that of pub-
licly available static Bloom filter implementations while also
allowing for scalable growth as more elements are inserted into
the filter. This capability could therefore be used in Java based
programs to reduce memory consumption in cases where the
total number of elements the filter is supposed to hold cannot
be determined at the time it is constructed. Furthermore, our
conducted tests have indicated that the scaling effect also
makes the actual error rate adhere in a better way to the
maximum desired error rate compared to the discussed static
implementations. This overall yields better performance for
many practically plausible deployment scenarios. It may be ad-
visable for resource constrained programs to use the proposed
scalable implementation to optimize memory usage. It may
provide an appropriate API to set specific filter parameters in
order to make the implementation more adaptable to different
use cases and situations.
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