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A set-like data structure invented by Burton H. Bloom in 1970   [1]

A set is an unordered collection of distinct elements.

In mathematics we would write:

S = { e1 , e2 , … , en  }

As the most basic operation one might…

… add element e into a set S

S ∪ { e }
… query whether a given Element e is part of a set S

e ∈ S       ?
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A set-like data structure invented by Burton H. Bloom in 1970   [1]
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As the most basic operation one might…
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In Java we would write (for a hashset of strings):

Set<String> s = new HashSet<>();

As the most basic operation one might…

… add element e into a set S

s.add(e);
… query whether a given Element e is part of a set S

s.contains(e);     ?



In programming there is a problem when a set grows too large:

● Every distinct object added to the set must be kept in memory

● That’s not practically feasible for a set with millions of elements

The concept of Bloom filters:

Trade memory for accuracy
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A Bloom filter consists of a bit vector of size n

Initially all bits are set to zero

In order to insert an element e into the filter:

Use different hash functions to generate k hashes of e

Every hash h0 , … , hk-1  represents an index of the bit vector  (hi mod n)

All bits at the computed indices are set to 1

In order to query whether an element e has been added to the filter:

Compute k hashes of e and their respective index (just as when inserting)

Check whether all bits at the given indices are set to 1
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Let’s say we have a Bloom filter with a bit vector of 15 bits. We use 3 hash functions in this example
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

        0                   1                    2                    3                   4                    5                    6                   7                    8                    9                  10                  11                 12                 13                  14      

n = 15
k = 3



Let’s add an element e0 to the filter:

               H0(e0) mod n = 3                                     H1(e0) mod n = 5                                       H2(e0) mod n = 12
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0 0 0 1 0 1 0 0 0 0 0 0 1 0 0

        0                   1                    2                    3                   4                    5                    6                   7                    8                    9                  10                  11                 12                 13                  14      

n = 15
k = 3



Let’s add another element e1 to the filter:

               H0(e1) mod n = 2                                     H1(e1) mod n = 5                                       H2(e1) mod n = 9
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0 0 1 1 0 1 0 0 0 1 0 0 1 0 0

        0                   1                    2                    3                   4                    5                    6                   7                    8                    9                  10                  11                 12                 13                  14      

n = 15
k = 3

Same index as e0 
but that’s OK



Let’s query the filter to see if element e2 has been added to the filter:          (e2 ≠ e0 ≠ e1)

                                                H0(e2) mod n = 3                              H1(e2) mod n = 9                                            H2(e2) mod n = 12
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0 0 1 1 0 1 0 0 0 1 0 0 1 0 0

        0                   1                    2                    3                   4                    5                    6                   7                    8                    9                  10                  11                 12                 13                  14      

n = 15
k = 3



The filter affirms the existence of element e2 even though it was never added:

● This is called a false positive

● It happens when all hashes map to indices of bits which were previously set by insertions of other elements
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0 0 1 1 0 1 0 0 0 1 0 0 1 0 0

        0                   1                    2                    3                   4                    5                    6                   7                    8                    9                  10                  11                 12                 13                  14      



The maximum allowed false positive rate can be specified when the filter is constructed

Problems

● The capacity is fixed and must be specified at the time the filter is constructed

● Once a filter is created it cannot grow dynamically

● Inserting more elements than the initial capacity allows will result in an increasing false positive rate
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Based on a paper published by Almeida et al. in 2007   [2]

Scales dynamically during runtime as more elements are added

Is useful when the number of elements cannot be determined at the time the filter is constructed

Adheres to the specified maximum allowed error rate, even when scaling

Advantages

Less overall memory usage

The Bloom filter must not be initialized with the maximum expected number of elements 
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Divide a filter into K separate slices

Elements always set K bits when inserting them                      No hash collisions between slices

When inserting an element e, the bits to set are computed for all integers   0 ≤ i ≤ K

as:
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

        0                   1                    2                    3                   4                    5                    6                   7                    8                    9                  10                  11                 12                 13                  14      

K0 K1 K2

M = 15

K = 3

m = M / K = 5

bi = (Hi(e) mod m) + (i m)



As more elements are added to the filter, more bits get set

The fill ratio p is the amount of set bits in relation to the overall vector size

When p reaches 50%, a new vector is added with an increased capacity
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        0                   1                    2                    3                   4                    5                    6                   7                    8                    9                  10                  11                 12                 13                  14      

1 0 1 0 1 1 0 0 1 1 0 1 1 0 0

M = 15

K = 3

m = M / K = 5

Fill ratio p = 8/15 ≈ 53%

The next insertion will cause the filter to grow



When a vector stops being used it becomes read-only and a new one is added

Membership queries are performed by checking all vectors
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1 0 1 0 1 1 0 0 1 1 0 1 1 0 0

1 1 1 0 0 0 1 1 0 0 0 0 0 1 1 1 0 1 1 0 0 1 1 0 0 1 0 1 0 1 1 0 1 0 0 1 0 1 1 1

0 0 0 0 1 1 0 0 0 1 0 1 1 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1

p = 21/40 ≈ 52%

p = 8/15 ≈ 53%

.

.

.

K = 3

K = 4

K = 5

p = 26/80 ≈ 32%

Keep growing when the currently used  stage hits 50%



● We use our own bit vector implementation. It internally caches the number of set bits

● We use the Murmur3 (128 bit) algorithm for hashing (may change in the future)

● Adjusted the Murmur3 Java-implementation from Google’s Guava library to perform hashing without allocating heap memory

● No use of ByteBuffer objects since endianness does not matter (no cross-language support)

● Only use 64 bits from the 128 bit hash value

● Only compute one real hash value and modify it for every slice as discussed in  [3]
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For benchmarking we searched for static Bloom filter implementations on GitHub  (in Java)

We ended up including one Cuckoo filter as well to have a more complete view over all publicly available solutions

All conducted test runs executed on an Intel i7-9700K CPU
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The following external test subjects were finally included into the benchmarks:

● Baqend - Various implementations of static Bloom filters provided by Baqend  [4]

● Google -  Their implementation of a static Bloom filter as provided by the open source Guava library  [5]

● Gunlogson -  An implementation of a Cuckoo filter by Mark Gunlogson  [6]

● Sangupta -  An implementation of a static Bloom filter by Sandeep Gupta  [7]
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Comparing filters when given the effective set capacity initially
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Fig. 1:  Average runtime of element insertions for various set sizes and a maximum 
allowed error probability of 1%
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Fig. 2:  Average runtime of membership queries for various set sizes and a maximum 
allowed error probability of 0.1%
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Fig. 3:  False positive rate for 200,000 randomly generated negative elements and a 
maximum allowed error probability of 1%
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Comparing filters when given the effective set capacity initially

● Competitive runtime behaviour compared to static filters

● Outperforms static filters in most cases

● Actual error rate is lower
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Key properties
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Fig. 4:  Average runtime for different maximum allowed false positive rates, element types 
and filter methods for a set with 16,384,000 elements
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Fig. 5:  Normalized false positive rate for different element types and maximum allowed 
error rates as a function of set size. The 100% mark corresponds to the maximum allowed 
error 27
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Key properties

● Membership queries are faster than element insertions

● Demanding a lower maximum error rate makes filter operations slower

● Insignificant differences between random and pattern structured data

● Good adherence to specified maximum error rate
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Comparing filters when our implementation is aggressively scaling
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Fig. 6:  Average runtime of element insertions for various set sizes and a maximum 
allowed error probability of 0.01%. Our scaling filter is constructed with an initial capacity 
of 1,000 elements 30
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Fig. 7: False positive rate for 200,000 negative samples and a maximum allowed error 
probability of 0.01%. Our scaling filter is constructed with an initial capacity of 512,000 
elements 31
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Comparing filters when our implementation is aggressively scaling

● Runtime starts to deteriorate slightly after approx. 8 million inserted elements

● Runtime never gets really out of proportion

● But: at a certain point of scaling it starts to introduce a performance penalty

● The actual error rate has more outliers when scaling

● The actual error rate mostly adheres to the specified maximum allowed rate for practically plausible scenarios
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Our implementation provides competitive results compared to other publicly available implementations

Scaling takes a considerable time until it starts to significantly deteriorate filter performance

A scalable Bloom filter is particularly suitable for resource constraint programs
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You can download the paper

You can download the code

You can download this presentation

The scalable Bloom filter implementation will be incorporated into the Claymore library in version 3.0.0
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