
A Scalable Bloom Filter Implementation in Java

Raven Computing GmbH

Bitspark

January 2020

1. What’s a Bloom filter?

2. How does it work?

3. Scalable Bloom filters

4. Our implementation

5. Evaluation

6. Conclusions

Copyright © 2020 Raven Computing

2

Content

A set-like data structure invented by Burton H. Bloom in 1970 [1]

A set is an unordered collection of distinct elements.

In mathematics we would write:

S = { e1 , e2 , … , en }

As the most basic operation one might…

… add element e into a set S

S ∪ { e }
… query whether a given Element e is part of a set S

e ∈ S ?

3

What’s a Bloom filter?

Copyright © 2020 Raven Computing

A set-like data structure invented by Burton H. Bloom in 1970 [1]

A set is an unordered collection of distinct elements.

In mathematics we would write:

S = { e1 , e2 , … , en }

As the most basic operation one might…

… add element e into a set S

S ∪ { e }
… query whether a given Element e is part of a set S

e ∈ S ?

4

What’s a Bloom filter?

Copyright © 2020 Raven Computing

In Java we would write (for a hashset of strings):

Set<String> s = new HashSet<>();

As the most basic operation one might…

… add element e into a set S

s.add(e);
… query whether a given Element e is part of a set S

s.contains(e); ?

In programming there is a problem when a set grows too large:

● Every distinct object added to the set must be kept in memory

● That’s not practically feasible for a set with millions of elements

The concept of Bloom filters:

Trade memory for accuracy

5

What’s a Bloom filter?

Copyright © 2020 Raven Computing

A Bloom filter consists of a bit vector of size n

Initially all bits are set to zero

In order to insert an element e into the filter:

Use different hash functions to generate k hashes of e

Every hash h0 , … , hk-1 represents an index of the bit vector (hi mod n)

All bits at the computed indices are set to 1

In order to query whether an element e has been added to the filter:

Compute k hashes of e and their respective index (just as when inserting)

Check whether all bits at the given indices are set to 1

6

How does it work?

Copyright © 2020 Raven Computing

Let’s say we have a Bloom filter with a bit vector of 15 bits. We use 3 hash functions in this example

7

Example

Copyright © 2020 Raven Computing

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

n = 15
k = 3

Let’s add an element e0 to the filter:

 H0(e0) mod n = 3 H1(e0) mod n = 5 H2(e0) mod n = 12

8

Example

Copyright © 2020 Raven Computing

0 0 0 1 0 1 0 0 0 0 0 0 1 0 0

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

n = 15
k = 3

Let’s add another element e1 to the filter:

 H0(e1) mod n = 2 H1(e1) mod n = 5 H2(e1) mod n = 9

9

Example

Copyright © 2020 Raven Computing

0 0 1 1 0 1 0 0 0 1 0 0 1 0 0

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

n = 15
k = 3

Same index as e0
but that’s OK

Let’s query the filter to see if element e2 has been added to the filter: (e2 ≠ e0 ≠ e1)

 H0(e2) mod n = 3 H1(e2) mod n = 9 H2(e2) mod n = 12

10

Example

Copyright © 2020 Raven Computing

0 0 1 1 0 1 0 0 0 1 0 0 1 0 0

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

n = 15
k = 3

The filter affirms the existence of element e2 even though it was never added:

● This is called a false positive

● It happens when all hashes map to indices of bits which were previously set by insertions of other elements

11

Example

Copyright © 2020 Raven Computing

0 0 1 1 0 1 0 0 0 1 0 0 1 0 0

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

The maximum allowed false positive rate can be specified when the filter is constructed

Problems

● The capacity is fixed and must be specified at the time the filter is constructed

● Once a filter is created it cannot grow dynamically

● Inserting more elements than the initial capacity allows will result in an increasing false positive rate

12

How does it work?

Copyright © 2020 Raven Computing

Based on a paper published by Almeida et al. in 2007 [2]

Scales dynamically during runtime as more elements are added

Is useful when the number of elements cannot be determined at the time the filter is constructed

Adheres to the specified maximum allowed error rate, even when scaling

Advantages

Less overall memory usage

The Bloom filter must not be initialized with the maximum expected number of elements

13

Scalable Bloom filters

Copyright © 2020 Raven Computing

Divide a filter into K separate slices

Elements always set K bits when inserting them No hash collisions between slices

When inserting an element e, the bits to set are computed for all integers 0 ≤ i ≤ K

as:

14

Scalable Bloom filters

Copyright © 2020 Raven Computing

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

K0 K1 K2

M = 15

K = 3

m = M / K = 5

bi = (Hi(e) mod m) + (i m)

As more elements are added to the filter, more bits get set

The fill ratio p is the amount of set bits in relation to the overall vector size

When p reaches 50%, a new vector is added with an increased capacity

15

Scalable Bloom filters

Copyright © 2020 Raven Computing

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 0 1 0 1 1 0 0 1 1 0 1 1 0 0

M = 15

K = 3

m = M / K = 5

Fill ratio p = 8/15 ≈ 53%

The next insertion will cause the filter to grow

When a vector stops being used it becomes read-only and a new one is added

Membership queries are performed by checking all vectors

16

Scalable Bloom filters

Copyright © 2020 Raven Computing

1 0 1 0 1 1 0 0 1 1 0 1 1 0 0

1 1 1 0 0 0 1 1 0 0 0 0 0 1 1 1 0 1 1 0 0 1 1 0 0 1 0 1 0 1 1 0 1 0 0 1 0 1 1 1

0 0 0 0 1 1 0 0 0 1 0 1 1 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1

p = 21/40 ≈ 52%

p = 8/15 ≈ 53%

.

.

.

K = 3

K = 4

K = 5

p = 26/80 ≈ 32%

Keep growing when the currently used stage hits 50%

● We use our own bit vector implementation. It internally caches the number of set bits

● We use the Murmur3 (128 bit) algorithm for hashing (may change in the future)

● Adjusted the Murmur3 Java-implementation from Google’s Guava library to perform hashing without allocating heap memory

● No use of ByteBuffer objects since endianness does not matter (no cross-language support)

● Only use 64 bits from the 128 bit hash value

● Only compute one real hash value and modify it for every slice as discussed in [3]

17

Our implementation

Copyright © 2020 Raven Computing

For benchmarking we searched for static Bloom filter implementations on GitHub (in Java)

We ended up including one Cuckoo filter as well to have a more complete view over all publicly available solutions

All conducted test runs executed on an Intel i7-9700K CPU

18

Evaluation

Copyright © 2020 Raven Computing

The following external test subjects were finally included into the benchmarks:

● Baqend - Various implementations of static Bloom filters provided by Baqend [4]

● Google - Their implementation of a static Bloom filter as provided by the open source Guava library [5]

● Gunlogson - An implementation of a Cuckoo filter by Mark Gunlogson [6]

● Sangupta - An implementation of a static Bloom filter by Sandeep Gupta [7]

19

Evaluation

Copyright © 2020 Raven Computing

Comparing filters when given the effective set capacity initially

20

Evaluation

Copyright © 2020 Raven Computing

Fig. 1: Average runtime of element insertions for various set sizes and a maximum
allowed error probability of 1%

21

Evaluation

Copyright © 2020 Raven Computing

Fig. 2: Average runtime of membership queries for various set sizes and a maximum
allowed error probability of 0.1%

22

Evaluation

Copyright © 2020 Raven Computing

Fig. 3: False positive rate for 200,000 randomly generated negative elements and a
maximum allowed error probability of 1%

23

Evaluation

Copyright © 2020 Raven Computing

Comparing filters when given the effective set capacity initially

● Competitive runtime behaviour compared to static filters

● Outperforms static filters in most cases

● Actual error rate is lower

24

Evaluation

Copyright © 2020 Raven Computing

Key properties

25

Evaluation

Copyright © 2020 Raven Computing

Fig. 4: Average runtime for different maximum allowed false positive rates, element types
and filter methods for a set with 16,384,000 elements

26

Evaluation

Copyright © 2020 Raven Computing

Fig. 5: Normalized false positive rate for different element types and maximum allowed
error rates as a function of set size. The 100% mark corresponds to the maximum allowed
error 27

Evaluation

Copyright © 2020 Raven Computing

Key properties

● Membership queries are faster than element insertions

● Demanding a lower maximum error rate makes filter operations slower

● Insignificant differences between random and pattern structured data

● Good adherence to specified maximum error rate

28

Evaluation

Copyright © 2020 Raven Computing

Comparing filters when our implementation is aggressively scaling

29

Evaluation

Copyright © 2020 Raven Computing

Fig. 6: Average runtime of element insertions for various set sizes and a maximum
allowed error probability of 0.01%. Our scaling filter is constructed with an initial capacity
of 1,000 elements 30

Evaluation

Copyright © 2020 Raven Computing

Fig. 7: False positive rate for 200,000 negative samples and a maximum allowed error
probability of 0.01%. Our scaling filter is constructed with an initial capacity of 512,000
elements 31

Evaluation

Copyright © 2020 Raven Computing

Comparing filters when our implementation is aggressively scaling

● Runtime starts to deteriorate slightly after approx. 8 million inserted elements

● Runtime never gets really out of proportion

● But: at a certain point of scaling it starts to introduce a performance penalty

● The actual error rate has more outliers when scaling

● The actual error rate mostly adheres to the specified maximum allowed rate for practically plausible scenarios

32

Evaluation

Copyright © 2020 Raven Computing

Our implementation provides competitive results compared to other publicly available implementations

Scaling takes a considerable time until it starts to significantly deteriorate filter performance

A scalable Bloom filter is particularly suitable for resource constraint programs

33

Conclusions

Copyright © 2020 Raven Computing

You can download the paper

You can download the code

You can download this presentation

The scalable Bloom filter implementation will be incorporated into the Claymore library in version 3.0.0

34

Where do we go from here?

Copyright © 2020 Raven Computing

www.raven-computing.com/research/bitspark

[1] B.H. Bloom, Space/time trade-offs in hash coding with allowable errors, Communications of. ACM, vol. 13, no. 7, 1970

[2] P.S. Almeida, C. Baquero, N. Preguica, and D. Hutchison, Scalable Bloom filters, Information Processing Letters, vol. 101, pp. 255–261, 2007

[3] A. Kirsch and M. Mitzenmacher, Less hashing, same performance: building a better bloom filter, European Symposium on Algorithms, pp. 456–467, 2006

[4] Baqend (org.), Library of different Bloom filters in Java (...), GitHub, 2015, Access via https://github.com/Baqend/Orestes-Bloomfilter

[5] Google (org.), Google core libraries for Java , GitHub, 2010, Access via https://github.com/google/guava

[6] M.Gunlogson, High performance Java implementation of a Cuckoo filter, GitHub, 2016, Access via https://github.com/MGunlogson/CuckooFilter4J

[7] S. Gupta, Bloom filters for Java, GitHub, 2014, Access via https://github.com/sangupta/bloomfilter

35

References

Copyright © 2020 Raven Computing

Phil Gaiser

phil.gaiser@raven-computing.com

Thank you.

Raven Computing GmbH

